Example: Laser Manipulator Control System

1. Establish transfer function

```
>> s = tf([1 0],[0 1]);

>> sysG = 1 / (s*(0.1*s+1)*(0.2*s+1))

sysG =

1

0.02 s^3 + 0.3 s^2 + s
```

Continuous-time transfer function.

2. Draw root locus

- >> rlocus(sysG)
- >> grid

3. rlocfind

>> help rlocfind

rlocfind Find root locus gains for a given set of roots.

[K,POLES] = rlocfind(SYS) is used for interactive gain selection from the root locus plot of the SISO system SYS generated by RLOCUS. rlocfind puts up a crosshair cursor in the graphics window which is used to select a pole location on an existing root locus. The root locus gain associated with this point is returned in K and all the system poles for this gain are returned in POLES.

[K,POLES] = rlocfind(SYS,P) takes a vector P of desired root locations and computes a root locus gain for each of these locations (i.e., a gain for which one of the closed-loop roots is near the desired location). The j-th entry of the vector K gives the computed gain for the location P(j), and the j-th column of the matrix POLES lists the resulting closed-loop poles.

move the mouse and click the root locus to see the corresponded gain K

```
>> axis([-5 1 -10 10])
>> [k,p] = rlocfind(sysG)
Select a point in the graphics window
selected point =
  -0.4356 + 6.1120i
k =
   10.6109
p =
 -14.1200 + 0.0000i
  -0.4400 + 6.1140i
  -0.4400 - 6.1140i
```


Example 8.8 Third order system gain design

Establish transfer function

```
s = tf([1 0],[0 1]);
sysG = (s+1.5) / (s*(s+1)*(s+10));
rlocus(sysG)
hold on
grid
axis([-10 10 -10 10])
hold on
plot([-10 0],[10*0.75 0])
```


Assumption of second order system: find roots and gain corresponded with desired damping ratio by rlocfind

>> [k,p] = rlocfind(sysG)

To test our assumption of second order system

- → calculate the location of the third pole
- → Search along the negative extension of the real axis for points that match the value of gain found at the second order dominant poles

Location of the third pole and corresponded gain & dominant poles

```
>> [k,p] = rlocfind(sysG)
                                                                            >> [k,p] = rlocfind(sysG)
>> [k,p] = rlocfind(sysG)
Select a point in the graphics window Select a point in the graphics window Select a point in the graphics window
                                       selected point =
                                                                             selected point =
selected point =
                                         -8.6119 - 0.0394i
 -1.7999 - 0.0237i
                                                                               -9.2521 - 0.0079i
                                       k =
k =
                                                                             k =
                                          12.8000
   39.2680
                                                                                 7.3659
                                       p =
p =
                                                                             p =
  -4.5993 + 3.3977i
                                         -8.6112 + 0.0000i
                                                                               -9.2521 + 0.0000i
                                         -1.1944 + 0.8961i
  -4.5993 - 3.3977i
                                                                               -0.8739 + 0.6561i
  -1.8014 + 0.0000i
                                         -1.1944 - 0.8961i
                                                                               -0.8739 - 0.6561i
```


