A Simple Formal Method to Synthesize an Orchestrator in Web Service Composition

Ahmed Khoumsi

Abstract—We study the following web service composition problem: given existing web services S_1, \ldots, S_n and a desired web service S_0, the objective is to synthesize an orchestrator Orch that coordinates S_1, \ldots, S_n so that S_0 is provided. We develop a simple input-output automata-based method that solves this composition problem. We also study whether the desired service S_0 is totally or partially provided by the system $((S_i)_{i=1}^{n}, \text{Orch})$ (i.e. composition of $(S_i)_{i=1}^{n}$ and Orch). The studied problem can be seen as a control problem, where Orch is a controller that restricts the behaviors of S_1, \ldots, S_n so that the controlled system conforms to S_0.

I. INTRODUCTION

Web service (WS) composition consists in coordinating several existing WSs so that they cooperate to provide a new WS. However, several problems arise with WS composition. For example, the WSs to be combined may be incompatible, which requires to detect and resolve such eventual incompatibilities. To address the complexity of WS composition, several composition models have been developed, such as orchestration and choreography. Orchestration consists in designing a module called orchestrator that coordinates (or orchestrates) several WSs so that a desired service is provided. Choreography can be seen as a decentralized or distributed variant of orchestration. We will use the terms WS and service as synonyms.

We study and solve a composition problem whose inputs are: services S_1, \ldots, S_n and a desired service S_0. Our objective is to synthesize automatically a module called orchestrator and denoted Orch that coordinates S_1, \ldots, S_n so that they provide S_0. We also analyze the provided service to determine whether it realizes S_0 totally or partially. The studied problem can be seen as a control problem, where Orch is a controller that restricts the behaviors of S_1, \ldots, S_n so that the controlled system conforms to S_0.

The rest of the paper is organized as follows: In Section II, we present an illustrative example of inputs and result of our synthesis method. We give two services S_1 and S_2 and a desired service S_0, and we present the orchestrator that is expected to result from our synthesis method. Section III presents Input-Output Automata (IOAs) used to model the inputs (S_0, \ldots, S_n) and the result (Orch) of our synthesis method, and then our synthesis objective is formally defined. For the purpose of our synthesis method, we need to transform the IOAs modeling $(S_i)_{i=0}^{n}$ into Extended IOAs (or E-IOAs). The latter are presented in Section IV. In Section V, we develop our synthesis method and analyze its correctness and to what extent it permits to provide (partially or totally) the desired service. Section VI discusses related work and our contribution. We conclude in Section VII.

II. ILLUSTRATIVE EXAMPLE

We will use the example of Fig. 1 to clarify our explanations. This example is taken from from [1] to facilitate the comparison (in Sect. VI) of our work with [1]. For each sequence diagram, the corresponding sequence of interactions is obtained by top-down scanning of the diagram. The service S_1 of Fig. 1(a) receives an input SSN (social security number) and generates an output CCN (credit card number). The service S_2 of Fig. 1(b) receives an input CCN twice and generates respectively outputs Appr (credit approval) and Loan (loan approval). The desired service S_0 of Fig. 1(c) receives an input CCN and generates an output Loan. For each of these services S_1, S_2, S_0, an arrow from left to right represents an input coming from the user of the service, and an arrow from right to left represents an output of the service towards its user.

The design question is: how can we combine S_1 and S_2 to obtain S_0? A solution is represented in Fig. 1(d), where the two vertical bars at the right represent S_1 and S_2, and the vertical bar at the left represents Orch. Henceforth, we use the term environment as the user of the system consisting of the composed services and the orchestrator. The latter plays the role of an intermediary between the environment (at the left) and S_1 and S_2 (at the right). The service provided to the environment is represented by the sequence at the left of the left bar, which is similar to the sequence of S_0 (Fig. 1(c)), hence the desired service S_0 is provided. The sequence of arrows between the left bar and the right bars shows how Orch interacts with S_1 and S_2 to provide S_0. The whole sequence of interactions is interpreted as follows: Orch receives SSN from the environment and forwards it to S_1 which replies by sending CCN to Orch. The latter forwards CCN to S_2 which replies by sending Appr to Orch. Then, Orch sends for the second time CCN to S_2 which replies by sending Loan to Orch which forwards it to the environment.

III. MODELING AND OBJECTIVE

A. Preliminaries

We consider services S_1, \ldots, S_n to be composed and a desired service S_0 to be provided. Our solution is to synthesize an orchestrator Orch as an intermediary between the environment and $(S_i)_{i=1}^{n}$, so that $((S_i)_{i=1}^{n}, \text{Orch})$ (i.e. composition of $(S_i)_{i=1}^{n}$ and Orch) provides S_0. In
Fig. 1. Example: (a) Service S_1; (b) Service S_2; (c) Desired service S_0; (d) Orchestration.

such a system, every S_i ($i = 1 \cdots n$) interacts uniquely with Orch. There is no direct interaction between two S_i and S_j, nor between any S_i and the environment. The model of each S_i ($i = 1 \cdots n$) specifies the sequencing of the interactions between Orch and S_i, and the model of S_0 specifies the sequencing of the interactions between Orch and the environment. Hence, every interaction in the models of S_0 and $(S_i)_{i=1 \cdots n}$ represents a reception or an emission of a datum σ by Orch. Since Orch is an intermediary, its only task is to forward data it has received. The forward may be multiple (i.e. data forwarded several times, possibly to different destinations) or null (data not forwarded). Let D be the set of data that Orch exchanges with S_1, \cdots, S_n and the environment. Since the same datum $\sigma \in D$ can be exchanged in different places, we will note it σ_i when it is exchanged between Orch and S_i, for $i \in \{1, \cdots, n\}$, and σ_0 when it is exchanged between Orch and the environment.

In our example, $D = \{\text{SSN, CCN, Appr, Loan}\}$. SSN_0 (resp. SSN_1) is SSN when it is exchanged between Orch and the environment (resp. S_1). CCN_1 (resp. CCN_2) is CCN when it is exchanged between Orch and S_1 (resp. S_2). Appr_2 is Appr when it is exchanged between Orch and S_2, Loan_0 (resp. Loan_2) is Loan when it is exchanged between Orch and the environment (resp. S_2).

B. IOAs to model $(S_i)_{i=0 \cdots n}$ and Orch

Each of $(S_i)_{i=0 \cdots n}$ (inputs of our synthesis problem) and Orch (the result) is modeled by an Input Output Automata (or IOA). Usually, the transitions of an IOA are labeled in the form σ/μ, i.e. the reception of σ is followed by the sending of μ. But for the purpose of our study, we consider that every transition is labeled in the form σ/μ or $-\sigma/-\mu$. Hence, a transition labeled σ/μ is specified as two consecutive transitions labeled $\sigma/-\mu$ and $-\sigma/\mu$, respectively.

Let $T_i = (Q_i, \Sigma_i, \alpha_i, q_0^i)$ be the IOA modeling S_i, for $i = 0 \cdots n$, where Q_i is a set of states, q_0^i is the initial state, Σ_i is the alphabet, and $\alpha_i \subseteq Q_i \times \Sigma_i \times Q_i$ specifies the transitions. Σ_i contains interactions in the form $\sigma_i/-\mu_i$ and $-\sigma_i/\mu_i$. For $i = 1 \cdots n$, $\sigma_i/-\mu_i$ means S_i receives σ from Orch, and $-\sigma_i/\mu_i$ means S_i sends μ to Orch. $\sigma_0/-\mu_0$ means Orch receives σ from the environment, and $-\sigma_j/-\mu_j$ means Orch sends μ (to the environment if $j = 0$, or to some S_j if $j \neq 0$).

The IOAs $(T_i)_{i=0 \cdots n}$ have their alphabets $(\Sigma_i)_{i=0 \cdots n}$ disjoint, because any σ_i and σ_j ($i \neq j$) correspond to distinct interactions. Note that the inputs and outputs of T_0 are also inputs and outputs of \mathcal{O}, respectively, but the inputs and outputs of $(T_i)_{i=1 \cdots n}$ are reversed into inputs and outputs of \mathcal{O}, respectively. Due to this reversion and since \mathcal{O} is involved in all interactions of $(T_i)_{i=0 \cdots n}$, we have that the alphabet Σ is obtained by reversing the inputs and outputs of the alphabets $(\Sigma_i)_{i=1 \cdots n}$ and then making the union of all resulting alphabets and Σ_0.

For our example, the IOAs $(T_i)_{i=0,1,2}$ modeling $(S_i)_{i=0,1,2}$ and the IOA \mathcal{O} modeling Orch are represented in Figure 2.

C. Objective Specified Formally

We consider two operators on automata: the synchronized product and the projection [2], [3]. The system $((S_i)_{i=0 \cdots n}, \text{Orch})$ is modeled by the synchronized product $T_0 \otimes \cdots \otimes T_n \otimes \mathcal{O}$. This product is computed after reversing the inputs and outputs of $(T_i)_{i=1 \cdots n}$. The synchronization consists in executing every interaction of \mathcal{O} simultaneously with a similar interaction in some T_i. To define the service provided by $((S_i)_{i=0 \cdots n}, \text{Orch})$, we use the projection P in the alphabet Σ_0, that keeps observable only the interactions $\sigma_0/-\mu_0$ and $-\sigma_0/\mu_0$. The service provided by $((S_i)_{i=0 \cdots n}, \text{Orch})$ is modeled by $P(T_0 \otimes \cdots \otimes T_n \otimes \mathcal{O})$.

Definition 3.1: Consider two IOAs A and B with the same alphabet and their two respective generated languages L_A and L_B. $A \equiv B$ means $L_A = L_B$, $A \prec B$ means $L_A \subset L_B$, and $A \preceq B$ means $L_A \subseteq L_B$.

We characterize formally the total or partial provision of S_0 as follows:

Definition 3.1: The desired service S_0 is said provided by $((S_i)_{i=0 \cdots n}, \text{Orch})$ if $P(T_0 \otimes \cdots \otimes T_n \otimes \mathcal{O}) \preceq T_0$. More specifically, S_0 is said totally (resp. partially) provided if $P(T_0 \otimes \cdots \otimes T_n \otimes \mathcal{O}) \equiv T_0$ (resp. $P(T_0 \otimes \cdots \otimes T_n \otimes \mathcal{O}) \prec T_0$).

Intuitively, total (resp. partial) provision of S_0 means that $((S_i)_{i=0 \cdots n}, \text{Orch})$ can execute all and only (resp. only but not all) traces executable by S_0.

In Section III-A, we have noted that Orch can only forward (no time, one time or more times) data it has received. Formally, Orch must respect the following rule:

Rule 3.1: Let L_O be the language accepted by \mathcal{O}. In every trace of L_O, every $-\sigma_i$ is necessarily after σ_j/\cdot.
In Rule 3.1, \(i\) may be different from \(j\). We have now all the ingredients to define formally our objective as follows:

Objective 1: From \((T_1)_{i=0,\ldots,n}\), we have to synthesize \(O\) that respects Rule 3.1 and the following two points: 1) \(S_0\) is provided by \(((S_i)_{i=1,\ldots,n}, \text{Orch})\); 2) if \(S_0\) is partially provided by \(((S_i)_{i=1,\ldots,n}, \text{Orch})\), there exists no orchestrator \(X\) respecting Rule 3.1 such that \(((S_i)_{i=1,\ldots,n}, X)\) provides \(S_0\) totally. In a word, the synthesized orchestrator is the one that best provides the desired service.

IV. EXTENDED IOAS TO MODEL \((S_i)_{i=0,\ldots,n}\)

To synthesize in a simple way an IOA \(O\) modeling the orchestrator that respects Rule 3.1, we need to transform the IOAs \((T_i)_{i=0,\ldots,n}\) into extended IOAs (or E-IOAs) which are presented in this section. To each datum \(\sigma \in D\), we associate a variable \(x_\sigma \in \{0, 1\}\) that has the following meaning:

- \(x_\sigma\) is set to 1 (resp. 0) to indicate that Orch has (resp. has not) received \(\sigma\).

Then, to each transition of \(T_i\), we associate an *enabling condition* or an *assignment* that have the following forms and semantics:

- When a transition is executed, its assignment is applied, if any. An assignment is in the form \("x_\sigma = 1"\) and means setting \(x_\sigma\) to 1, i.e. it indicates that Orch has received \(\sigma\). Hence, \("x_\sigma = 1"\) is used in every transition representing the *reception* by Orch of \(\sigma\).

- An enabling condition is in the form \("i f x_\sigma = 1"\) and is used to respect Rule 3.1, i.e. to permit that Orch sends \(\sigma\) only if \(x_\sigma\) evaluates to 1, i.e. only if Orch has received such \(\sigma\). Hence, \("x_\sigma = 1"\) is used in every transition representing the *sending* by Orch of \(\sigma\).

Therefore, to respect Rule 3.1, we have to respect the following rules:

Rule 4.1: To every transition representing the *reception* by Orch of \(\sigma\), we associate the assignment \("x_\sigma = 1"\) and no enabling condition.

Rule 4.2: To every transition representing the *sending* by Orch of \(\sigma\), we associate the enabling condition \("i f x_\sigma = 1"\) and no assignment.

A. Modeling the Services \((S_i)_{i=1,\ldots,n}\) by E-IOAs

In this subsection, when we write \(S_i\), we consider \(i \in \{1, \ldots, n\}\). The E-IOA modeling each \(S_i\) is defined as \(S_i = \langle L_i, \Sigma_i, D_i, \nu_i, \delta_i, \ell_i^0, \delta_i^0\rangle\), where \(L_i\) is a set of locations, \(\ell_i^0\) is the initial location, \(\Sigma_i\) is the set of inputs \(\sigma_i/-\) and outputs \(-/\sigma_i\) of \(S_i\), \(D_i\) is the set of data exchanged between Orch and \(S_i\), and \(\nu_i\) is the set of variables \(x_\sigma\) associated to every datum \(\sigma \in D_i\), \(\delta_i \subseteq L_i \times \Sigma_i \times \ell_i \times A_i \times L_i\) specifies the transitions, where \(A_i\) is the set of enabling conditions \("i f x_\sigma = 1"\) and \(A_i\) is the set of assignments \("x_\sigma = 1"\), for all variables \(x_\sigma\) in \(\nu_i\). We use the term *location* instead of *state*, because a state is defined by a location and a valuation of each variable \(x_\sigma\).

Let us consider separately the input and output transitions.

An input transition of \(S_i\) is defined by \([\ell, \sigma_i/-, \text{if } x_\sigma = 1, -, \ell^\prime]\), which means that if \(\sigma_i/-\) occurs while the current location is \(\ell\) and \(x_\sigma\) evaluates to 1, then the location \(\ell^\prime\) is reached. \("-"\) in the fourth position means the absence of assignment. Such a transition represents the *reception* by \(S_i\) of \(\sigma\) coming from \(\text{Orch}\), i.e. the *sending* by Orch of \(\sigma\). Hence, Rule 4.2 becomes:

Rule 4.3: In \((S_i)_{i=1,\ldots,n}\), an input transition executing \(\sigma_i/-\) has the enabling condition \("i f x_\sigma = 1"\) and no assignment.

An output transition of \(S_i\) is defined by \([\ell, \sigma_i/-, \text{if } x_\sigma = 1, \ell^\prime]\), which means that if \(-/\sigma_i\) occurs while the current location is \(\ell\), then the location \(\ell^\prime\) is reached and \(x_\sigma\) is set to 1. \("-"\) in the third position means the absence of enabling condition. Such a transition represents the *sending* by \(S_i\) of \(\sigma\) to \(\text{Orch}\), i.e. the *reception* by Orch of \(\sigma\). Hence, Rule 4.1 becomes:

Rule 4.4: In \((S_i)_{i=1,\ldots,n}\), an output transition executing \(-/\sigma_i\) has the assignment \("x_\sigma = 1"\) and no enabling condition.

B. Modeling the Desired Service \(S_0\) by an E-IOA

The E-IOA modeling \(S_0\) is defined as \(S_0 = \langle L_0, \Sigma_0, D_0, \nu_0, \delta_0, \ell_0^0, \delta_0^0\rangle\), where \(L_0\) is a set of locations, \(\ell_0^0\) is the initial location, \(\Sigma_0\) is the set of inputs and outputs of \(S_0\), \(D_0\) is the set of data exchanged between Orch and the environment, and \(\nu_0\) is the set of variables \(x_\sigma\) associated to every datum \(\sigma \in D_0\). \(\delta_0 \subseteq L_0 \times \Sigma_0 \times \ell_0 \times A_0 \times L_0\) specifies the transitions, where \(A_0\) is the set of enabling conditions \("i f x_\sigma = 1"\) and \(A_0\) is the set of assignments \("x_\sigma = 1"\), for all variables \(x_\sigma\) in \(\nu_0\). Let us consider separately the input and output transitions.

An input transition of \(S_0\) is defined by \([\ell, \sigma_0/-, \text{if } x_\sigma = 1, \ell^\prime]\), which means that if \(\sigma_0/-\) occurs while the current location is \(\ell\), then the location \(\ell^\prime\) is reached and \(x_\sigma\) is set to 1. Such a transition represents the *reception* by Orch of \(\sigma\) from the environment. Hence, Rule 4.1 becomes:

Rule 4.5: In \(S_0\), any input transition executing \(\sigma_0/-\) has the assignment \("x_\sigma = 1"\) and no enabling condition.

An output transition of \(S_i\) is defined by \([\ell, \sigma_i/-, \text{if } x_\sigma = 1, \ell^\prime]\), which means that if \(-/\sigma_i\) occurs while the current location is \(\ell\) and \(x_\sigma\) evaluates to 1, then the location \(\ell^\prime\) is reached. Such a transition represents the *sending* by Orch of \(\sigma\) to the environment. Hence, Rule 4.2 becomes:

Rule 4.6: In \(S_0\), any output transition executing \(-/\sigma_0\) has the enabling condition \("x_\sigma = 1"\) and no assignment.

C. Example of E-IOAs \((S_i)_{i=0,\ldots,n}\)

Figure 3 shows the E-IOAs \(S_1, S_2, S_0\) obtained from the IOAs \(T_1, T_2, T_0\) of Fig. 2. We have \(\Sigma_1 = \{SSN_1/-, ./CCN_1\}, \Sigma_2 = \{CCN_2/-, ./Appr_2, ./Loan_2\}\), \(\Sigma_3 = \{CCN, Appr, Loan\}, \Sigma_0 = \{SSN_0/-, ./Loan_0\}\), \(D_0 = \{SSN, Loan\}\), and \(\nu_0 = \{SSSN, x_Loan\}\). Locations are represented by circles, where the initial location is numbered 0. A transition from location \(\ell\) to location \(\ell^\prime\) is represented by an arrow from \(\ell\) to \(\ell^\prime\), where the interaction (\(\sigma_i/-\) or \(-/\sigma_i\)) is above the arrow, and the enabling condition or assignment is below the arrow.
Since the three E-IOAs depend with each other due to the use of common variables \(x_\sigma \) (e.g. \(x_{SSN} \) is used by \(S_0 \) and \(S_1 \)), let us explain them together. "\(x_{SSN}=1 \)" associated to \(SSN_i \) in \(S_0 \) and "\(x_{CCN}=1 \)" associated to \(CCN_2 \) in \(S_1 \), model the fact that \(SSN_1 \) (Orch sends SSN to \(S_1 \)) occurs after \(SSN_0 \) (Orch receives SSN from the environment). "\(x_{CCN}=1 \)" associated to \(CCN_1 \) in \(S_1 \) and "\(x_{SSN}=1 \)" associated to \(SSN_1 \) in \(S_1 \), model the fact that \(CCN_2 \) (Orch sends CCN to \(S_2 \) occurs after \(CCN_1 \) (Orch receives CCN from \(S_1 \)). "\(x_{Loan}=1 \)" associated to \(Loan_1 \) in \(S_2 \) and "\(x_{Loan}=1 \)" associated to \(Loan_0 \) in \(S_0 \), model the fact that \(Loan_0 \) (Orch sends Loan to the environment) occurs after \(Loan_2 \) (Orch receives Loan from \(S_2 \)).

For our example, we have \(p = 4 \) because we have four data \(SSN, CCN, Appr, Loan \) whose respective indexes can for example be 1, 2, 3, 4. A state of \(O \) is defined as \((\ell_0, \ell_1, \ell_2, v_1, v_2, v_3, v_4)\) where each \(\ell_i \) is a location of \(S_i \) for \(i = 0, 1, 2, \) and \(v_1, \ldots, v_4 \) are respective valuations (0 or 1) of \(x_{SSN}, x_{CCN}, x_{Appr}, x_{Loan} \).

Notation 5.1: Let \(q = (\ell_0, \ldots, \ell_n; v_1, \ldots, v_p) \) be a state of \(O \). Consider a location \(\ell \) of \(S_i \) (\(0 \leq i \leq n \)) and a value \(v \in \{0, 1\} \). \(q[i;\ell, j;v] \) denotes the state obtained from \(q \) by replacing \(\ell_i \) and \(v_j \) by \(\ell \) and \(v \), respectively. In particular, \(q[i;\ell] \) denotes the state obtained from \(q \) by replacing \(\ell_i \) by \(\ell \).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig_3}
\caption{E-IOAs obtained from the IOAs of Fig. 2: (a) \(S_1 \); (b) \(S_2 \); (c) \(S_0 \).}
\end{figure}

\section*{V. ORCHESTRATOR SYNTHESIS}

\subsection*{A. Preliminaries}

In Section III-C, we have defined our objective as the synthesis of an IOA \(O \) from IOAs \((T_i)\) such that the two points of Objective 1 are respected. We have developed a synthesis procedure whose principle consists in transforming \((T_i)\) into \((S_i)\) and then computing a synchronized product \(S_0 \otimes S_1 \otimes \cdots \otimes S_n \). Note that we compute a synchronized product of E-IOAs and not of IOAs. This product is computed by the developed synthesis procedure which is presented further. The result of the product is indeed the IOA \(O \) modeling Orch. The E-IOAs \((S_i)\) have disjoint alphabets, since any \(\sigma_i \) and \(\sigma_j \) (for \(i \neq j \)) correspond to distinct interactions. It is the variables \(x_\sigma \) and the corresponding assignment and enabling condition that permit to respect the order constraints required by Rule 3.1 while computing the product \(S_0 \otimes S_1 \otimes \cdots \otimes S_n \). Since \(O \) is involved in all interactions of \((S_i)\), the set of data exchanged in \(O \) is the union of all data exchanged in \((S_i)\). Before explaining how the product is realized, we need the following definitions.

\textbf{Definition 5.1:} Consider a transition \(T \) of \(S_i \) and let \(\ell \) be its origin location and \(E \) be its enabling condition. \(T \) is said \textit{eligible} when \(\ell \) is the current location. \(T \) is said \textit{enabled} when it is eligible and \(E \) evaluates to true. By transition of index \(i \), we mean a transition of \(S_i \).

\textbf{Definition 5.2:} Let \(p \) be the number of data \(\sigma \) exchanged in \(O \). \(p \) is also the number of variables \(x_\sigma \) used in \(O \), which are ordered from 1 to \(p \). The \textit{index} of \(x_\sigma \) denotes its order. In the computation of the IOA \(O \), a state of \(O \) is defined as \((\ell_0, \cdots, \ell_n; v_1, \cdots, v_p)\). Each \(\ell_i \) is a location of \(S_i \), and each \(v_k \in \{0, 1\} \) is a value of the variable \(x_\sigma \) of index \(k \).
is the set that will contain all transitions of \(\mathcal{O} \). It is initially empty because no transition has not yet been computed.

While-loop: In each iteration, a state in \(\mathcal{R} \) is treated by constructing its outgoing transitions and the corresponding destination states. The while-loop iterates until \(\mathcal{R} \) is empty, which occurs when all states and transitions of \(\mathcal{O} \) have been constructed. The first instruction of the while-loop is to select a state \(q \) of \(\mathcal{R} \) to be treated, and its last instruction is to remove \(q \) from \(\mathcal{R} \) after it has been treated.

Outer and inner for-loops: the combination of the two nested for-loops inside the while-loop consists in considering every eligible transition of every \(\mathcal{S}_i \), for \(i = 0 \cdots n \). More precisely, the outer-loop considers every \(\mathcal{S}_i \), and the inner-loop considers every eligible transition of \(\mathcal{S}_i \).

Outer if (\(C = \text{true} \)): the considered eligible transition is treated if it is enabled.

Inner if-else (A empty or not): The “if” (resp. “else”) part treats the case where the considered enabled transition has no (resp. has an) assignment. The treatment consists in constructing the destination state \(r \) reached in \(\mathcal{O} \) by the execution of the considered enabled transition.

Inner if (\(r \not\in \mathcal{Q} \)): It inserts the constructed state \(r \) in \(\mathcal{Q} \) and \(\mathcal{R} \) if \(r \) has not been previously constructed. After this “if”, the transition leading from \(q \) to \(r \) is inserted in \(\alpha \).

Finally, inputs \(\sigma_i/\cdot \) and outputs \(\sigma_i/\cdot \), for \(1 \leq i \leq n \) are reversed into outputs and inputs (see Sect. III-B), and then every pair of consecutive transitions labeled \(\sigma_i/\cdot \) and \(-/\mu_j \) are combined into a single transition labeled by \(\sigma_i/\mu_j \).

For the \((T_i)_{i=0,1,2}\) of Fig. 2(a,b,c), we have seen in Section IV-C that after the transformation into E-IOAs, we obtain the \((S_i)_{i=0,1,2}\) of Fig. 3. The IOA \(\mathcal{O} \) that results from the synthesis procedure before the final combination is shown in Fig. 4(a), where each state \((\ell_0, \ell_1, \ell_2; v_1, v_2, v_3, v_4)\) is specified in two lines “\(\ell_0, \ell_1, \ell_2\)” and “\(v_1, v_2, v_3, v_4\)”. After the final combination, we obtain the IOA \(\mathcal{O} \) of Fig. 4(b). The latter IOA is similar to the expected IOA of Fig. 2(d).

![Fig. 4. Synthesized \(\mathcal{O} \): (a) before combination; (b) after combination.](image)

For the purpose of our study, in the following two sub-sections, we consider the IOAs \((T_i)_{i=0,\cdots,n}\) and \(\mathcal{O} \) with their transitions labeled by \(\sigma_i/\cdot \) or \(-/\mu_i \). We use the term trace to denote a sequence of interactions of an IOA.

C. Correctness and Verification

We consider the synthesized IOA \(\mathcal{O} = \langle Q, \Sigma, \alpha, q^0 \rangle \) (before the final combination) and \(T_0 = \langle Q_0, \Sigma_0, \alpha_0, q_0^0 \rangle \).

VI. RELATED WORK AND CONTRIBUTION

Automated synthesis of WS composition has been intensively studied in the last decade. Due to the great number of
work in the area, several interesting surveys and overviews have been published such as [4], [5], [6], [7], [8], [9]. These surveys categorize approaches for composing WSs, identify requirements that should be respected in WS composition, and analyze and compare design approaches with regard to their capabilities to respect the identified requirements.

Due to our experience in automata-based design methods in various subjects, we have been interested by approaches of WS composition using finite state automata. For example, the authors of [10] study how to solve the problem of synthesizing automatically WS composition using automata and the control theory of discrete event systems [11]. They study conditions that make this problem decidable.

[1], [12], [13], [14] have particularly drawn our interest. [1] develops an Input-output-automata (IOA)-based method to synthesize a choreographer that coordinates several services to realize a desired service. [12] improves [1] by reducing state space explosion. [13], [14] adapt the work in [1], [12] for decentralized choreography. The synthesis methods developed in [1], [12], [13], [14] are based on known notions (closure, universal automaton, simulation) and other new notions based on Transduce (transduced-closure, transduced-realizability, transucing-choreographer) and History. All these notions require developing new operators which are uselessly complex. This observation motivated us to develop the simpler approach presented in this paper. Since [12], [13], [14] are continuations of the original approach of [1], let us discuss our contributions compared to [1]:

- The above mentioned notions (e.g. transducing, history) are avoided by using Extended IOAs (E-IOAs) which consist in associating enabling conditions and assignments to transitions. E-IOAs may be complex in general, but this is not our case because we use trivial enabling condition and assignments. The most important (but simple) operator we use to synthesize the orchestrator, is a synchronized product between the extended E-IOAs modeling the services to be composed and the desired service. E-IOAs have not to be constructed or used by the designer of WS. Instead, the synthesis method generates automatically E-IOAs from the IOAs modeling the services.

- The orchestrator we have developed corresponds to the transducing choreographer of [1] which is a complex sophistication of a first simple choreographer. Interestingly, our approach generates naturally the equivalent of the complex version, and we need to adapt it to obtain the simple choreographer. The adaptation can be simply done as follows. We can specify that the orchestrator forwards at most once a received σ, by adding the assignment “x_{z}:=0” to every sending of σ by the orchestrator. We can also specify that the orchestrator forwards σ immediately after its reception, by using adequate enabling conditions and assignments that block every interaction of the orchestrator until σ has been forwarded. We conjecture that we will be capable to design more sophisticated and valued orchestrators, by using various kinds of enabling conditions and assignment.

- In addition to synthesizing the orchestrator, we show how to verify whether the provided service realizes totally or partially the desired service. Moreover, we show how to determine which portion of the desired service is actually provided.

- The formal proofs of our propositions are in a longer version of this paper [15].

VII. CONCLUSION

We have presented an automata based method to synthesize an orchestrator that coordinates several services so that a desired service is provided. The method has the advantage of being simpler than other synthesis methods thanks to the use of specific extended input-output automata.

For future work, we will study how the same approach can be simply adapted for using more sophisticated orchestrators that do more than just forwarding received data. We will investigate how the adaptation can be realized by identifying various adequate enabling conditions and assignments. We also plan to implement our method in order to apply it to real-life examples.

REFERENCES