Tire Force Estimation for a Passenger Vehicle with the Unscented
Kalman Filter

Harry Hamann¹, J. Karl Hedrick², Stephan Rhode³ and Frank Gauterin³

Abstract—A robust method to estimate tire forces for a passenger vehicle with the Unscented Kalman Filter (UKF) is provided. Only standard vehicle sensors were used and no a priori knowledge of tire and road properties was required. The estimator uses the bicycle model and a random walk tire force model. The tire force estimates were compared to a CarSim reference model for combined slip maneuvers. The results showed a good overall tracking performance of the estimator. In addition, the UKF-estimator demonstrated a high convergence rate and good stability properties. The performed robustness studies showed that the estimator performs well even in the presence of disturbances such as changes in tire-road friction. This method enables a cost-effective and robust implementation for future real-time vehicle applications.

I. INTRODUCTION

A. Motivation

The motion of a vehicle is primarily affected by the friction forces transmitted from the road through four small contact areas, the tire footprints. A lot of vehicle control systems rely on the knowledge of these tire forces such as classical Anti-lock Braking System (ABS) and Electronic Stability Program (ESP) but also in more recent applications like collision avoidance systems [1].

Tire forces depend on a lot of different variables such as slip ratios and normal loads but also on road and tire properties like the tire-road friction, road profile, tire pressure and wear. When using physical or empirical tire force models all of these influences must be known in advance. This requires extensive testing and calibrating and has to be done for each different vehicle equipped with a specific set of tires [2, p.40].

On the other hand, tire forces can be measured by using special tire sensors. This approach requires a complicated installment and these sensors are not cheap [3, p.1813].

As a consequence, a practical solution is necessary which does not rely on prior knowledge of road and tire properties and uses cost-effective sensors. Some estimation algorithms treat road and tires as a black box and do not require any prior knowledge of these properties [4, p.117]. Nonlinear Kalman Filters have shown high potential in estimating vehicle states and tire forces with good accuracy even in the presence of sensor noise.

An overview of State-of-the-Art methods in estimating tire forces will be given in the following.

¹Harry Hamann is currently Master’s Student at the Karlsruhe Institute of Technology, Germany (harry.hamann@gmx.de).
²J. Karl Hedrick is with the Vehicle Dynamics & Control Lab at the University of California, Berkeley, USA (khedrick@me.berkeley.edu).
³Stephan Rhode and Frank Gauterin are with the Institute for Vehicle System Technology at the Karlsruhe Institute of Technology, Germany (stephan.rhode, frank.gauterin}@kit.edu).

B. State-of-the-Art

Ray [4] developed a method for nonlinear state and per-axle tire force estimation with a five degree-of-freedom bicycle model in the estimator and a third order random walk tire force model using an Extended Kalman Filter (EKF). This results in a 17th-order estimation model. It was assumed that the steering angle at the wheel and the applied braking torque were known inputs. The measurement vector consisted of yaw rate, front and rear wheel angular velocities and longitudinal and lateral accelerations. The tire force estimation results showed a good accuracy. Ray [5] developed also a similar method. An EKF estimated lateral tire forces per-axle and longitudinal forces for all four wheels but only during braking.

Samadi et al. [6] developed a Square-Root EKF using a four wheel vehicle model with seven degrees-of-freedom and a stochastic Gauss-Markov tire force model. Inputs were the braking torques at each wheel, acceleration signals and wheel angular velocities. Longitudinal forces were estimated per wheel and lateral forces were estimated per-axle.

Baffet, Charara and Dherbomez [7] developed an EKF with a bicycle model and a Burckhardt/Kiencke adaptive lateral tire force model for estimating per-axle tire forces. Only commonly available standard sensors were used and the knowledge of wheel torques was not necessary. The rear longitudinal force was neglected. The results showed a good tracking performance of the EKF compared to simulations from the dynamic simulator Callas with a Magic Formula tire model. Baffet, Charara and Lechner [8] developed a similar method which uses a sliding-mode observer instead of an EKF. Appropriate observer gains were chosen with the help of several tests. Chattering effects were avoided by using a linear function. The tire force estimation results showed a good estimation accuracy compared to experimental data.

Dakhllallah et al. [9] developed an EKF for tire force estimation at each wheel of a four wheel model with a Dugoff tire force model. Only commonly available sensors were used. Inputs to the model were the steering angle signal, all four angular wheel velocities as well as acceleration signals and yaw rate.

Doumiati et al. [10] developed a method for the estimation of individual lateral and per-axle longitudinal tire forces neglecting rear longitudinal forces. In a first block normal tire forces were estimated with suspension deflection measurements and acceleration signals. The resulting normal forces were then used as inputs to the tire force estimator along with measurements like yaw rate, accelerations, steering angle and wheel angular velocities. A four wheel vehicle model
was used with a Dugoff tire force model and a relaxation tire force model for the time derivative of the force. The estimation process was conducted using an EKF as well as an Unscented Kalman Filter (UKF). The estimates followed the experimental data closely. The UKF showed superior performance compared to the EKF in terms of convergence rate and tracking performance.

Nuthong [11] developed an EKF and an UKF including adaptive versions for tire force estimation with a stochastic first-order Gauss-Markov tire force model. The estimation results were compared to the behavior of a reference vehicle model with a LuGre friction model whereas this friction model was validated with the Magic Formula tire model. The input signals steering angle and torques at each wheel were assumed to be known. Nuthong [11] finally validated the tire force estimates with experimental data and tire force sensors. His results showed a very good tire force estimation accuracy especially with the UKF.

C. Contributions of this Work

The main contribution of this work is to estimate tire forces with the UKF with an acceptable accuracy using only standard sensors which are available in most of the series-production vehicles today. Therefore, this method enables a cost-effective implementation for future real time vehicle applications. Examples of commonly available sensors are wheel speed and yaw rate sensors.

Most of the researchers have focussed on tire force estimation with an EKF as stated in Section I-B. The UKF has a better estimation accuracy at similar computation times and has therefore been chosen herein.

Most of the tire force estimators mentioned in I-B work only when the vehicle is braking. The approach presented here works also when the vehicle is accelerating because the engine torque is measured and a driveline model is used.

For future implementation in a real vehicle the computation time plays also an important role. That is why the vehicle model in the estimator shall have a reduced complexity. The stochastic tire force model used in this paper has a reduced complexity and is more efficient in simulation compared to higher order tire force models chosen in I-B.

In addition, a stochastic tire force model which does not rely on road or tire properties is chosen in contrast to some of the physical tire models in I-B which require tire parameters.

Instead of assuming the torque at the wheel to be directly available, we not only use a driveline model for estimating accelerating forces but also a simple model of the braking system of the vehicle.

Several studies in I-B compare the tire force estimates to higher degree-of-freedom reference models. These models still have serious modeling uncertainties which puts the quality of reference tire forces into question. We compare the tire force estimation results to a sophisticated vehicle model from the vehicle dynamics simulator CarSim which includes also effects such as ABS braking. The resulting reference tire forces are therefore more realistic.

Sensor noise is added to the virtual measurements and inputs in order to get more realistic conditions. The scaling of the sensor noise terms is based on data sheets of commercially available sensors [12]. Zero-mean, white Gaussian noise is added to the virtual measurements and inputs.

Finally, we focus not only on estimation accuracy but also on robustness properties of the estimator when the vehicle is subject to disturbances such as changes in tire-road friction or a different vehicle mass.

This paper is organized as follows. A sophisticated CarSim vehicle model in conjunction with a Magic Formula Tire Model is introduced in Section II-A for generating reference tire forces. Section II-B gives an overview about the estimation process and shows the inputs, virtual measurements and outputs. The UKF-estimator model consisting of a bicycle vehicle model and a simple random walk tire force model is introduced in Section II-C. The simulation setup and the UKF setup are described in Section II-G and Section II-H, respectively. Tire force estimation results are shown for a combined slip maneuver in Section III. Finally, Section IV provides conclusions.

II. TIRE FORCE ESTIMATION METHOD WITH THE UKF

A. Reference Model

The CarSim commercial simulation suite [13] models and simulates the dynamic behavior of vehicles. There is a big database available and a lot of different vehicle maneuvers to choose from. The implemented vehicle models in CarSim are sophisticated. They include wind and aerodynamic effects, 3D road geometries, nonlinear suspension systems, steering systems, braking systems with ABS, different powertrains, and so forth. The behavior of these vehicle models will be much more alike a real vehicle compared to previous studies. In this paper a mid-sized sedan was chosen with a nonlinear Magic Formula tire model, suspension system, powertrain with automatic transmission and torque converter, a braking system with ABS and several other functionalities. The Magic Formula tire model was chosen because it generates horizontal tire forces with high accuracy and is efficient in simulation.

B. Estimation Process Overview

The inputs, virtual measurements and outputs for the estimation process of the UKF are shown in Fig. 1. The inputs to the reference model are the steering wheel angle \(\delta \), engine torque \(T_{\text{eng}} \) and braking pressures of the brake cylinders at the front \(p_{\text{brf}} \) and rear \(p_{\text{brr}} \). According to the simulated motion of the reference vehicle some virtual measurements are made. These virtual measurements are simply output signals of the reference vehicle model. These include the longitudinal velocity \(v_x \), longitudinal acceleration \(a_x \), lateral acceleration \(a_y \), yaw rate \(\psi \) and the angular wheel velocities \(\omega_f \) at the front and at the rear \(\omega_r \).

A prediction of the states is made based on the dynamic model equations implemented in the filter (bicycle model and random walk tire force model). This prediction is then corrected by the innovation available through the virtual measurements. The outputs are the state estimates. The state
vector includes longitudinal and lateral velocities v_x and v_y, the yaw rate ψ, the angular wheel velocities ω_f and ω_r and the unknown per-axle tire forces: namely the longitudinal tire forces at the front and rear axle $F_{x,f}$, $F_{x,r}$ and the lateral per-axle forces $F_{y,f}$, $F_{y,r}$. Please note that some vehicle parameters were assumed to be constant: the vehicle mass m_v, the dynamic tire radius r, the moment of inertia about the yaw axis I_z, the moment of inertia about the wheel axis I_w and finally the lengths between axles and center of gravity l_f and l_r.

C. UKF-Estimator Model

A vehicle model was defined also in the estimator. Due to reasons of computation time for a future real-time application of the tire force estimator in a real vehicle and due to reasons of simplicity a bicycle model was implemented in the estimator. Therefore, only tire forces per axle and not per wheel were estimated. The bicycle model considers longitudinal (x), lateral (y) and yaw (ψ) motion neglecting roll while traveling on a smooth road. The wheels at the front and rear are lumped together, respectively. The assumption was that only the front wheel is steerable. Please note that climbing resistance and aerodynamic drag were neglected.

Fig. 2 shows the configuration of the bicycle model with all relevant parameters and states.

D. Powertrain

The dynamic equations for the bicycle model require the torques at the wheel. The engine torque is transmitted via the transmission to the front axle (front wheel drive). Eq. 1 shows the simplified model:

$$T_{axle,\text{acc},f} = T_{\text{eng}} \cdot i_{\text{gear}} \cdot \eta_{\text{diff}} \cdot \eta_{\text{gear}}$$

(1)

where $T_{axle,\text{acc},f}$ is the accelerating torque at the front axle, T_{eng} is the engine torque, i_{gear} is the actual gear ratio, i_{diff} is a fixed ratio of the differential, η_{diff} is the efficiency of the differential and η_{gear} is the efficiency of the actual gear. The actual gear ratio is selected with the help of a sensor which gives the actual gear and a look-up table for the gear ratio.

E. Braking System

The model for the braking system is described in Eq. 2:

$$T_{axle,\text{br},f} = p_{\text{br},f} \cdot K_{\text{br},f}$$

(2)

where $T_{axle,\text{br},f}$ is the braking torque at the front axle, $p_{\text{br},f}$ is the sum of the pressure values of the braking cylinders at the front wheels and $K_{\text{br},f}$ is a braking constant for the front axle. This constant has the unit Nm/MPa. The braking constant can be calculated by using the braking piston area, brake disc radius, friction coefficient of the brake and the number of friction contacts [14, p. 32]. Similarly, the braking torque at the rear axle was calculated.

F. Steering System

For the steering system only a steering ratio was used according to Eq. 3:

$$\delta_f = \delta_{\text{sw}} \cdot i_{\text{steer}}$$

(3)

where δ_f is the steering angle of the front wheel, δ_{sw} is the steering wheel angle and i_{steer} is the ratio of the steering system.

The dynamic equations are shown in a discrete state-space form:

$$x_{t+1} = x_t + F(x_t, u_t) \cdot \Delta t + v_t$$

(4)

$$y_{t+1} = H(x_{t+1}) + n_{t+1}$$

(5)

where x_{t+1} is the state at time $t+1$, y_{t+1} is the measurement at time $t+1$, u_t is the input at time t, v_t is the process noise with covariance Q and u_{t+1} is the measurement noise with covariance R and Δt is the timestep. The state, measurement and input vector are defined in Eq. 6 to 8:

$$x_t = [v_x, v_y, \psi, \omega_f, \omega_r, F_{x,f}, F_{x,r}, F_{y,f}, F_{y,r}]^\top$$

(6)

$$y_t = [v_x, a_x, a_y, \psi, \omega_f, \omega_r]^\top$$

(7)

$$u_t = [\delta_{\text{sw}}, T_{\text{eng}}, p_{\text{br},f}, p_{\text{br},r}]^\top$$

(8)

The dynamics of the state variables are derived in Eq. 9a-9i to construct the state-space representation of the process model.
The measurement model \(H(x_{t+1}) \) is defined according to Eq. 10a-10f:

\[
\begin{align*}
 h_{1,t+1} & = v_{x,t+1} \\
 h_{2,t+1} & = \frac{v_{x,t+1} - v_{x,t}}{\Delta t} - \dot{\psi}_{t+1} v_{y,t+1} \\
 h_{3,t+1} & = \frac{v_{y,t+1} - v_{y,t}}{\Delta t} + \dot{\psi}_{t+1} v_{x,t+1} \\
 h_{4,t+1} & = \dot{\psi}_{t+1} \\
 h_{5,t+1} & = w_f,t+1 \\
 h_{6,t+1} & = w_r,t+1
\end{align*}
\]

G. Simulation Setup

The vehicle parameters are shown in Table I.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_w)</td>
<td>1530 kg</td>
<td>(K_{br,f})</td>
<td>250 Nm/MPa</td>
</tr>
<tr>
<td>(m_a)</td>
<td>1370 kg</td>
<td>(K_{br,r})</td>
<td>100 Nm/MPa</td>
</tr>
<tr>
<td>(I_z)</td>
<td>2315 kg m²</td>
<td>(h_{cg})</td>
<td>0.52 m</td>
</tr>
<tr>
<td>(I_w)</td>
<td>4.07 kg m²</td>
<td>(I_f)</td>
<td>1.11 m</td>
</tr>
<tr>
<td>(r)</td>
<td>0.298 m</td>
<td>(I_r)</td>
<td>1.67 m</td>
</tr>
<tr>
<td>(\delta_{steer})</td>
<td>19.35</td>
<td>(i_4)</td>
<td>1.00</td>
</tr>
<tr>
<td>(i_1)</td>
<td>3.538</td>
<td>(i_5)</td>
<td>0.713</td>
</tr>
<tr>
<td>(i_2)</td>
<td>2.06</td>
<td>(i_6)</td>
<td>0.582</td>
</tr>
<tr>
<td>(i_3)</td>
<td>1.404</td>
<td>(i_{diff})</td>
<td>4.1</td>
</tr>
</tbody>
</table>

\(m_a \) is the sprung mass, \(i_1 \) to \(i_6 \) are the gear ratios of the six speed transmission and \(K_{br,f}, K_{br,r} \) are the braking constants for the front and rear axle, respectively.

The sampling rate was 100 Hz. The simulation studies have been performed in MATLAB R2013a 8.1.0.604 (64-bit) and CarSim 8.2.1 on a 2.6 GHz Intel Core i5 with 8 GB 1600 MHz DDR3 and OS X 10.8.5.

Sensor noise was added to the virtual measurements and inputs in order to get more realistic conditions. The scaling of the sensor noise terms was based on data sheets of commercially available sensors [12]. Zero-mean, white Gaussian noise was added to the virtual measurements and inputs as shown in Table II.

TABLE II

<table>
<thead>
<tr>
<th>Sensor Variable</th>
<th>Std of noise</th>
<th>Sensor Variable</th>
<th>Std of noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_x)</td>
<td>0.2266 m/s²</td>
<td>(\delta)</td>
<td>0.0014 rad</td>
</tr>
<tr>
<td>(a_y)</td>
<td>0.2266 m/s²</td>
<td>(\psi)</td>
<td>0.0035 rad/s</td>
</tr>
<tr>
<td>(p_{br})</td>
<td>0.05 MPa</td>
<td>(w_f)</td>
<td>0.0834 rad/s</td>
</tr>
<tr>
<td>(w_r)</td>
<td>0.0834 rad/s</td>
<td>(v_x)</td>
<td>0.2528 m/s</td>
</tr>
</tbody>
</table>

H. UKF Setup

The UKF is a nonlinear Kalman Filter that avoids the need for calculating the Jacobian and shows superior accuracy compared to the EKF that works with a linearized model. The UKF algorithm is implemented according to [15, p. 233]. The chosen UKF parameters are shown in Table III. \(\alpha \) determines the spread of sigma points around the mean, \(\beta \) incorporates prior knowledge of the distribution of the state [15, p. 228f]. Higher-order moments of the sigma points can be tuned with \(\kappa \) in order to reduce the error in these terms [16, p. 1631]. Our experience was that higher values for \(\kappa \) led to significant improvements in the estimation accuracy when following the recommendation for \(\alpha \) in the range between \(10^{-4} \) and 1.

<table>
<thead>
<tr>
<th>UKF parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.5</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>100000</td>
</tr>
</tbody>
</table>

The chosen initial covariance \(P_0 \), the process noise covariance \(Q \) and the measurement noise covariance \(R \) are shown in the following. Please note that all elements which are not on the main diagonal are set to zero. The relationship between the process noise and the process noise covariance is as follows: \(Q(6,6) = \sigma^2_{F_{xf,t}} \). This relationship holds also for the measurement noise and its covariance.

\[
\begin{align*}
 \text{diag}(P_0) &= [1, 1e3, 1e3, 1e3, 1e3, 1e2, 1e2, 1e3, 1e3]^T \\
 \text{diag}(Q) &= [1e-6, 1e-8, 1e-6, 3.2e-1, 2.6e-1, \\
 & \quad \quad 5.5e3, 5.5e3, 9e2, 9e2]^T \\
 \text{diag}(R) &= [1e-3, 0.0014, 0.00014, 1.089e-6, \\
 & \quad \quad 7e-5, 7e-5]^T
\end{align*}
\]
III. SIMULATION RESULTS

In order to follow the guidelines of [17] a ready to run Matlab implementation that allows to rerun all presented results is available from http://digbib.ubka.uni-karlsruhe.de/volltexte/1000039902 as supplementary material of this article.

In the following, the reference values are shown in black whereas estimation values are shown in red color.

A. Combined Slip: Double Lane Change with Braking

Fig. 3 shows that the longitudinal, lateral tire forces and other states are estimated with high accuracy. The lateral force at the front axle shows a small phase delay. At \(t = 6.5\ldots8.5s \) a strong braking maneuver is applied during cornering. This leads to an estimation error in the lateral force. This error is not expected to be higher than shown in the plot because a strong combined slip condition was simulated. The longitudinal tire forces are estimated with good accuracy although the braking force estimates at the rear axle are slightly too high. Please note that the ABS system is active in the reference model. The longitudinal tire force estimates show that the UKF-estimator can capture this effect at least qualitatively although no ABS model was implemented in the estimator.

B. Disturbance 1: Changes in Vehicle Mass

In the following the vehicle mass in the reference vehicle model will be increased from 1530kg to 1660kg. That is an increase of 8.5% in mass. We want to emphasize that the vehicle model mass in the estimator remains unchanged.

Fig. 4 shows the inferior tracking performance of the UKF regarding tire forces during a double lane change with braking. Especially for the lateral tire forces, the estimator tire force values are mostly below the reference values. This effect becomes worse if the mass increase is even higher.

C. Disturbance 2: Sudden Changes in Tire-Road Friction

Sudden changes in tire-road friction were introduced. The friction coefficient is initially 0.3, jumps to 0.5 at \(t = 5.5s \) and to 0.85 at \(t = 8s \). Although the estimator has no knowledge of the tire-road friction available, Fig. 5 shows that the tire force estimates remain good. This shows how powerful the UKF-estimator is. Even in the presence of such disturbances in the form of extreme friction changes the estimation results remain good. Also other state estimates remain good.

D. Quantitative Tire Force Estimation Error

The normalized error in % can be defined as follows according to [18, p. 6941]:

\[
\epsilon_F = 100 \frac{|F_{ukf} - F_{ref}|}{\max(|F_{ref}|)} \quad (14)
\]

where \(F_{ukf} \) is the force estimate and \(F_{ref} \) is the force reference value at each time instant. Table IV shows the quantitative error for the performed combined slip maneuvers for all three cases. The error expressed in mean and standard deviation keeps very small.
The tire force estimation results with the UKF showed a good overall accuracy for a combined slip maneuver. The estimator is robust against changes in tire-road friction although no tire or road parameters are included in the estimator model. For some unknown parameter changes such as an unknown change in vehicle mass, the estimator shows a slightly inferior tracking performance. Therefore, future works must consider possible changes of certain vehicle parameters. This can be achieved with a parameter estimation parallel to the state estimation process [19]. Finally, the tire force estimator could be implemented in real time on a test vehicle due to the low computation times. Therefore, the MATLAB algorithm has to be converted into C-code.

IV. CONCLUSION

The tire force estimation results with the UKF showed a good overall accuracy for a combined slip maneuver. The estimator is robust against changes in tire-road friction although no tire or road parameters are included in the estimator model. For some unknown parameter changes such as an unknown change in vehicle mass, the estimator shows a slightly inferior tracking performance. Therefore, future works must consider possible changes of certain vehicle parameters. This can be achieved with a parameter estimation parallel to the state estimation process [19]. Finally, the tire force estimator could be implemented in real time on a test vehicle due to the low computation times. Therefore, the MATLAB algorithm has to be converted into C-code.

TABLE IV

<table>
<thead>
<tr>
<th>Combined Slip</th>
<th>Disturbance 1</th>
<th>Disturbance 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{xf}</td>
<td>8200N</td>
<td>8200N</td>
</tr>
<tr>
<td>F_{yr}</td>
<td>4600N</td>
<td>4500N</td>
</tr>
<tr>
<td>F_{yr}</td>
<td>5700N</td>
<td>5600N</td>
</tr>
<tr>
<td>F_{xf}</td>
<td>4700N</td>
<td>4700N</td>
</tr>
<tr>
<td>F_{xf}</td>
<td>4.2%</td>
<td>4.3%</td>
</tr>
<tr>
<td>F_{yr}</td>
<td>4.9%</td>
<td>3.2%</td>
</tr>
<tr>
<td>F_{yt}</td>
<td>6.5%</td>
<td>6.6%</td>
</tr>
<tr>
<td>F_{yr}</td>
<td>3.8%</td>
<td>4.5%</td>
</tr>
<tr>
<td>F_{xf}</td>
<td>6.2%</td>
<td>6.1%</td>
</tr>
<tr>
<td>F_{yr}</td>
<td>5.8%</td>
<td>4.1%</td>
</tr>
<tr>
<td>F_{xf}</td>
<td>8.8%</td>
<td>8.9%</td>
</tr>
<tr>
<td>F_{yr}</td>
<td>5.0%</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

REFERENCES

